第九屆旺宏科學獎

成果報告書

参賽編號: SA9-114

作品名稱:極化泡泡膜的形變

姓名:楊泓翊

關鍵字: 泡泡膜、靜電、極化

摘要:

肥皂膜主要成分為水,當帶電物體靠近時,水分子會旋轉。水分子旋轉後較規則的 排列使肥皂膜被極化,於是和帶電物產生一吸引力。本實驗主要研究肥皂膜受吸引時其 形狀的變化,與肥皂膜在何種情況下會破裂。我們計算出肥皂膜受帶電物體的吸引力, 並進一步算出當吸引力與肥皂膜表面張力平衡時的肥皂膜形狀,實驗結果顯示理論推算 出的形狀與真實的變形相似。當帶電物體達到某一電量後,表面張力將無法抗衡電吸引 力而導致肥皂膜破裂,我們稱該電量為臨界電量。理論與實驗結果顯示影響臨界電量的 有肥皂膜與帶電物的距離、肥皂膜半徑的大小與帶電物帶的電性(正電或負電)。

壹、 研究動機:

在化學競賽中,曾經碰過一道實驗題目,要求我們鑑定幾種未知液體。其中一項檢 測便是用帶電物靠近正在向下流的液體,若該未知液為極性物質,則該液體流會偏向帶 電物的方向。水為極性物質,故也會產生該偏向效應。於是一個想法閃過我的腦中:由 水產生的肥皂膜是不是也會受到帶電物體的影響,而改變形狀?這個問題令我十分感興 趣,於是決定設計實驗深入探討。

貳、 研究目的:

一、探討肥皂膜受帶電物吸引時的形狀變化。

二、探討使肥皂膜破裂所需的電量大小(臨界電量)與距離的關係。

- 三、探討臨界電量與線圈半徑的關係。
- 四、探討正負電對臨界電量的影響。
- 五、探討形成肥皂膜的線圈接地對臨界電量的影響。

参、 實驗器材:

肆、 研究方法

一、 實驗測量

(一)實驗方法

- 1. 將圓形線圈浸泡溶液製造肥皂膜。
- 2. 將肥皂膜置於金屬球底下。
- 3. 轉動韋氏起電機讓金屬球帶電。

4. 錄影紀錄肥皂膜形狀的變化情形及鋁箔驗電器角度的變化。

- 5. 改變線圈與金屬球的距離,並重複上述步驟。
- 6. 將電荷正負電改變,並重複上述步驟。

圖(一)轉動韋氏起電機時金屬球上的帶電量隨之增加,造成肥皂膜形狀改變,同時 銘箔驗電器的夾角增加。藉由錄影同時記錄驗電器夾角及肥皂膜形狀,即可分析金 屬球帶電量與肥皂膜形狀的關係。 (二)實驗器材的選擇

- 1. 带電物體的選擇
 - (1)剛開始嘗試使用球型電容接上電源器提供之一定電壓(12V)(圖二),然而這種方法帶電量太少(約1×10⁻¹⁰C),無法看到肥皂膜形變,所以改用韋氏起電機,以靜電方式製造帶電物體。
 - (2)原本採用小金屬球(直徑約2cm)作為帶電物,但金屬球半徑太小時電場過大, 造成金屬球對肥皂膜放電,故後來改用較大的金屬球殼(半徑約7cm)。

- 2. 線圈半徑的選擇
 - (1) 實驗發現發生肥皂膜形變的範圍十分小,所以線圈半徑可以不用太大(3cm以下)
 - (2)較小的肥皂膜可以維持較久,較穩定。(半徑 20 公分的肥皂膜平均維持 20 秒, 半徑1公分的肥皂膜可維持超過2分鐘)

- 3. 驗電器的製作:
 - (1)由於韋氏起電機需不停轉動才能產生電荷,而帶電物又容易以尖端放電等方式 流失電荷,所以帶電物無法長時間維持相同電量。故製作一鋁箔驗電器(圖四), 以便隨時掌握帶電物的電量。
 - (2)驗電器由兩片末端為鋁箔球的長條鋁箔組成,其轉軸用一根長針固定,使鋁箔 片可以自由轉動。

圖(四)

圖(二)

- 二、 理論推導與比較
 - 1. 由理論計算肥皂膜形狀及破裂條件,並與實驗結果相比較。
 - 計算用到的數值:
 - (1) *κ*:水的介電常數
 - (2) E₀:真空介電常數
 - (3) q:金屬球帶電量
 - (4)1:金屬球與肥皂膜距離
 - (5) r:線圈半徑
 - (6) θ:肥皂膜與線圈接觸處的夾角
 - (7) σ:水的表面張力
 - (8) R:驗電器鋁箔長度
 - (9) Φ:驗電器張角

伍、 實驗結果與探討

- 一、 實驗中觀察到的現象:
 - (一)當帶電物體靠近肥皂膜時,不論正負電,肥皂膜都會產生形狀改變。圖顯示肥皂膜向上形變,可知正負電荷對金屬球皆產生吸引力。

圖(五)(a)金屬球不帶電時,肥皂膜形狀為平行線圈的平面,可由驗電 器看出金屬球幾乎不帶電。(b)金屬球帶電時,肥皂膜產生形狀變化, 驗電器角度較圖(a)為大。

(二)當肥皂膜與金屬球距離固定時,發現當金屬球電量增加到一定值時,肥皂膜形狀會 突然快速改變,最後導致破裂。

圖(六)如以上所示,由(a)到(d)在短時間內發生,驗電器張角改變不大,但肥皂膜 形狀卻由幾乎沒變形(a),快速變化直到破裂(d)。 二、 肥皂膜形狀的探討:

由理論推導著手,解釋為何肥皂膜會變形。接著以理論估算肥皂膜的形狀,並與實 際的形狀進行比較。

(一) 肥皂膜形變的原因:

肥皂膜主要成分為水,當帶電物體靠近時,水分子會旋轉。水分子旋轉後的較具規 則的排列使肥皂膜極化,於是與帶電物產生一吸引力。故由此推論不論正負電的帶 電物皆會對肥皂膜產生引力。

> 圖(七) 帶電物靠近時水分 子旋轉,使肥皂膜極化

(二) 變因的探討:

有以下幾個變因會影響肥皁膜的形狀:

- 1. 带電物的性質:
 - (1) 電性為正電或負電(+或-)
 - (2) 帶電量(q)
- 2. 带電物的位置 金屬球球心到肥皁膜的距離。(1)
- (三) 理論推導肥皂膜受到的電吸引力:
 - 利用水的介電常數(κ),計算兩側極化產生的電荷量。
 - (1) 帶電物在肥皂膜附近產生的電場: $\frac{1}{4\pi\epsilon_0} \frac{q}{q}$
 - (2) 在肥皂膜兩側產生的感應電荷(q^{*}):(由高斯定律計算,參考圖(九)) 假設金屬球與肥皂膜距離(1)遠 大於線圈半徑(r)。 將肥皂膜一側以假想框圍住(如 圖),計算其電通量。 肥皂膜外側電場: $\frac{1}{4\pi \epsilon_0} \frac{q}{l^2}$ 圖(九)用高斯定理計算肥皂膜產生的感應電荷。 肥皂膜內部電場: $\frac{1}{4\pi\epsilon_0} \frac{q}{l^2 \kappa}$ 框內的電通量總和(如圖所示): $\frac{1}{4\pi \varepsilon_0} \frac{q}{l^2} (1 - \frac{1}{\kappa})$ 其中一面上的感應電荷q[´] = $\varepsilon_0 \left[\frac{1}{4\pi \varepsilon_0} \frac{q}{l^2} (1 - \frac{1}{\kappa}) \right] \times \pi r^2$

圖(八)各項變因示意圖

$$\therefore q^{-} = \frac{qr^2}{4l^2} (1 - \frac{1}{\kappa})$$

(κ 為水的介電常數, ε_0 為真空介電常數, q 為金屬球帶電量, l 為金屬球與肥 皂膜距離, q' 為感應電量)

2. 利用肥皂膜的厚度(d),計算帶電物對兩面感應電荷(q')產生的作用力合(F):

(1) 距帶電物遠側的同性電荷產生的排斥力: $\frac{qq}{4\pi\epsilon_0}\frac{1}{\left(l+\frac{d}{2}\right)^2}$ (2) 距帶電物較近側異性電荷的吸引力: $\frac{qq}{4\pi\epsilon_0}\frac{1}{\left(l-\frac{d}{2}\right)^2}$

7

- (四) 理論推算肥皂膜的形狀:
 - 利用水的表面張力(σ),計算肥皂膜形變多少時,表面張力合力會與電吸引力達到 平衡。

表面張力合力= $2\pi r\sigma \sin\theta$

- (θ 為肥皂膜與線圈接觸處的夾角(如圖十一), σ 為水的表面張力)
- 2. 計算整個肥皂膜的受力,達到平衡時電吸引力與表面張力合力相等。
- 3. 當表面張力合力與電吸引力平衡,得到肥皂膜形狀公式:

$$\frac{r^2 q^2 d}{8 \pi \varepsilon_0 l^5} \left(1 - \frac{1}{\kappa} \right) = 2 \pi r \sigma \sin \theta$$
$$\sin \theta = \frac{r q^2 d}{16 \pi^2 \sigma \varepsilon_0 l^5} \left(1 - \frac{1}{\kappa} \right)$$
$$\sin \theta \propto \frac{r q^2}{15}$$

(*θ*為肥皂膜與線圈接觸處的夾角, r 為線圈半徑, q 為金屬球電量, 1 為金

屬球與肥皂膜距離)

4. 利用此公式用 excel 畫出肥皂膜理論上的形狀。

畫法:

- (1) 計算不同 r 處的 $\sin\theta$ 值
- (2) 由 $\sin\theta$ 算出 $\tan\theta$ 值
- (3) 由線圈平面角度觀察實,線圈由半徑 r 增加到 r+dr 時,肥皂膜垂直方向的距離 變化為 $\tan \theta$ dr。
- (4) 將所以在 r 處,肥皂膜離線圈平面的高度為 $\int_0^r \tan \theta \, dr$
- (5) 用 excel 逼近 $\int_0^r \tan \theta \, dr$ 值
- (五) 理論推算出的形狀與實際形狀做比較。

此圖為肥皂膜的側截面圖,實際形狀為延中央對稱軸繞一圈所得的圖形。 理論形狀(由 excel) 實際形狀(實驗結果)

肥皂膜有不同程度的變形時,實際實驗中的形狀與理論計算出的形狀皆十分相近。理論的圖由上而下為帶入不同q值的計算結果;右邊實際圖則為增加金屬球電量時拍攝的一系列照片。

三、 肥皂膜的破裂條件:

因為電荷容易由空氣中放電流失,故金屬球的電量十分不穩定,肥皂膜的形狀無法 長時間維持固定。於是發現除了觀察肥皂膜靜態的形狀,觀察其動態下什麼條件會造 成肥皂膜的破裂也是一個不錯的選擇。

(一)實驗中發現當金屬球帶電量達到一定量以上時,肥皂膜會再也無法取得平衡狀態, 而會持續形變直到破裂。(如圖十二所示)

- 1. 當肥皂膜形變時,肥皂膜上端與帶電物的距離縮小。
- 2. 距離縮小造成電吸引力的增加。
- 若形變時肥皂膜表面張力合力的增加小於電吸引力的增加,則肥皂膜會持續變形直 到破裂。
- 定義臨界電量為使肥皂膜持續變形直到破裂的最小電量。

圖(十二)超過臨界電量時,肥皂膜變形時電吸引力增加大於表面張力合 力增加,造成肥皂膜形狀不斷改變直到破裂。

(二) 臨界電量的理論計算:

觀察到此現象後,我們決定試著用理論推導使肥皂膜破裂的條件。

當肥皂膜稍稍變形時,表面張力會增加,而肥皂膜各點與金屬球的距離會減少, 造成電吸引力的增加。在臨界電量時肥皂膜變形時表面張力增加與電吸引力增加相 等,故計算肥皂膜分別計算肥皂膜變形時二力的變化,在求出何時兩力會平衡,即 為臨界電量。

- 1. 由二. 的推導可得電荷吸引力 = $\frac{r^2q^2d}{8\pi \epsilon_0 l^5} (1 \frac{1}{\kappa})$

圖(十三)變形前變形後曲率半徑分別為R₁、R₂

由幾何關係可知,肥皂膜與線圈平面接觸處夾角與圓弧圓心角的一半相等。

$$\begin{split} & R_1 \sin \varphi_{max} = r_0 \text{ , } R_1 \sin \varphi = r \\ & R_2 \sin \theta_{max} = r_0 \text{ , } R_2 \sin \theta = r \\ & \varepsilon \lessapprox \Delta \theta = \theta_{max} - \varphi_{max} \end{split}$$

3. 當肥皂膜與線圈接觸處角度變化 $\Delta \theta$,距中心 r 處與金屬球的距離縮小 Δl (如圖十四)

圖(十四)距中心 r 處的∆l

$$\Delta l = R_1 (\cos \phi - \cos \phi_{max}) - R_2 (\cos \theta - \cos \theta_{max})$$

= $R_1 \left(\sqrt{1 - \frac{r^2}{R_1^2}} - \sqrt{1 - \frac{r_0^2}{R_1^2}} \right) - R_2 \left(\sqrt{1 - \frac{r^2}{R_2^2}} - \sqrt{1 - \frac{r_0^2}{R_2^2}} \right)$
= $R_1 \times \frac{r_0^2 - r^2}{2R_1^2} - R_2 \times \frac{r_0^2 - r^2}{2R_2^2}$
= $\frac{(r_0^2 - r^2)}{2} \times (\frac{1}{2R_1} - \frac{1}{2R_2})$
= $\frac{(r_0^2 - r^2)}{2} \left(\frac{\phi_{max}}{r_0} - \frac{\theta_{max}}{r_0} \right) = \frac{(r_0^2 - r^2)}{2r_0} \Delta \theta$

所以在距離中心 r 處, $\Delta l = \frac{(r_0^2 - r^2)}{2r_0} \Delta \theta$

 考慮半徑 r,寬度 dr≈ 0的一個環(如圖十五),在肥皂膜兩面產生的感應電荷由高 斯定律可得:

圖(十五)半徑 r,寬度 dr 的環

該環產生的感應電荷q[´] =
$$\varepsilon_0 [2 \pi \operatorname{rdr} \frac{1}{4\pi \varepsilon_0} \frac{q}{l^2} (1 - \frac{1}{\kappa})]$$

q[´] = $\frac{\operatorname{rq}}{2l^2} \left(1 - \frac{1}{\kappa}\right) \operatorname{dr}$

5. 带電物對此圓環的吸引力:

$$dF = \frac{qq}{4\pi \varepsilon_0} = \frac{rq^2 d}{4\pi \varepsilon_0 l^5} (1 - \frac{1}{\kappa}) dr$$

當距離改變 Δ l時,該環受的吸引力改變:

$$d\Delta F = \frac{-5q^2d}{4\pi \varepsilon_0} \left(1 - \frac{1}{\kappa}\right) \frac{1}{l^6} r dr \Delta l$$

6. 代入 3. 的結果: $\Delta l = \frac{(r_0^2 - r^2)}{2r_0} \Delta \theta$

$$\Delta d\mathbf{F} = \left[\frac{5q^2d}{8\pi \ \varepsilon_0 r_0 l^6} \left(1 - \frac{1}{\kappa}\right) \Delta \theta\right] (r_0^2 - r^2) r dr$$

將所有環積分起來,得到電吸引力的增加:

$$\int_{0}^{F} d\Delta F = \int_{0}^{r_{0}} \left[\frac{5q^{2}d}{8\pi \varepsilon_{0}r_{0}l^{6}} \left(1 - \frac{1}{\kappa} \right) \Delta \theta \right] (r_{0}^{2} - r^{2}) r dr$$
$$\Delta F = \frac{5q^{2}dr_{0}^{3}}{32\pi \varepsilon_{0}l^{6}} \left(1 - \frac{1}{\kappa} \right) \Delta \theta$$

7. 表面張力的增加:

$$\Delta (2\pi \operatorname{rsin} \theta) = 2\pi \operatorname{r} \sigma \cos \theta \Delta \theta$$

8. 表面張力增加與電吸引力增加相等:

$$\frac{5q^2 dr_0^3}{32 \pi \varepsilon_0 l^6} \left(1 - \frac{1}{\kappa}\right) \Delta \theta = 2 \pi r \sigma \cos \theta \Delta \theta$$
$$\therefore q^2 = \frac{64 \pi^2 \varepsilon_0 \sigma \cos \theta}{5 dr_0^2 \left(1 - \frac{1}{\kappa}\right)} l^6$$

當θ不大, cos θ≈1

$$\stackrel{\text{``}}{}_{q} \propto \frac{l^{6}}{r_{0}^{2}}$$

$$q \propto \frac{l^{3}}{r_{0}}$$

此公式為臨界電量與距離、線圈半徑的關係。

10. 驗電器夾角(φ)與帶電量(q)關係:

因為無法直接得到金屬球的電量,故須藉由驗電器的張角來計算金屬球帶電 量。

(1) 假設電荷集中於底部的鋁箔球上:

$$F \propto \frac{q^2}{(2R\sin\frac{\varphi}{2})^2}$$

(F為電排斥力,q金屬球帶電量,R為驗電器鋁箔長度。 φ 為驗電器張角。)

(2) 重力、鋁箔張力與電力達到平衡,如圖(十六):

圖(十六)驗電器示意圖

12

臨界電量時,驗電器夾角(φ)與距離(1)關係:
 將9.與10.的結果合起來得:(K為常數)

 $(\varphi | 為驗電器夾角, | 為帶電物與肥皂膜距離, r 為線圈半徑, K 為常數)$

$$\therefore \frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}} = K \frac{l^6}{r^2}$$

此式特別的地方在於驗電器張角(φ)與金屬球和肥皂膜距離(1)皆可於實驗中測量。 依照前述的理論推導, $\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 與 $\frac{16}{r^2}$ 應會有正比的關係,我們將於實驗中驗證此理論結 果是否正確。

- 四、 臨界電量與距離關係:
 - (一) 實驗方法:
 - 1. 每次測量前先將帶電物接地確定其不帶電。
 - 2. 將線圈浸入溶液形成肥皂膜,並將其至於帶電物底下。
 - 3. 轉動韋氏起電機使金屬球帶電,並錄影紀錄驗電器夾角與肥皂膜形變狀況。
 - 4. 截取肥皂膜破裂之瞬間的圖片,以軟體 Image J 測量驗電器夾角。
 - 5. 重複1.~3.步驟多次,求取平均值。
 - 6. 改變帶電金屬球與線圈的距離,並重複 1.~5. 的步驟。
 - (二) 臨界電量下驗電器夾角與距離關係:

圖(十七)(a)帶電物為正電時,臨界電量下距離與驗電器夾角關係。

2. 負電:

圖(十七)(b)帶電物為負電時,臨界電量下距離與驗電器夾角關係。

 由(圖十七)(a)(b)可知不論電性為正電或負電,在臨界電量時線圈與帶電物距 離越小驗電器夾角越小。驗電器夾角與電量成正相關,故知距離越小臨界電量 越小。

圖 $(+\Lambda)$ 橫軸為距離的六次方 (l_0^6) ,縱軸為 $\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}$ 。兩線都接近通過原點,負電的斜率大於正電。

- (1) 由(圖十八)可知 $\frac{\sin^{3\frac{\varphi}{2}}}{\cos^{\frac{\varphi}{2}}}$ 與 l⁶ 做圖結果以最小平方法所得的回歸直線**幾乎通過** 原點(截距很小),表示r相同時式 $\frac{\sin^{3\frac{\varphi}{2}}}{\cos^{\frac{\varphi}{2}}} = K \frac{l^{6}}{r^{2}} 在金屬球帶正電或負電時皆成立,$ 支持臨界電量與驗電器的理論。
- (2) 由驗電器得計算可知, $\frac{\sin^{3}\frac{\varphi}{2}}{\cos^{\frac{\varphi}{2}}}$ 代表的意義為 q^2 , 所以可得 $q \propto l^3$ 。

(q為臨界電量,1為金屬球與肥皂膜距離)

- (3)負電的回歸直線斜率較正電者為大,推測原因是當金屬球帶負電時,其上部分電子噴出至肥皂膜上,故帶些微負電的肥皂膜須被極化的更厲害才能被吸引至破裂;而當金屬球帶正電時,肥皂膜維持電中性,故臨界電量較小。
- 五、線圈半徑對臨界電量的影響:
- (一)理論推算:

由式子 $\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}} = K \frac{l^6}{r^2}$ 推測以 $\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}$ 對l⁶做圖時,斜率會與r²成反比,所以線圖半徑(r) 越大,斜率應越小。

(二)實驗方法:

1. 製作一半徑較原線圈稍大的線圈。

2. 已游標尺測量兩線圈的內徑與外徑,並求取平均值。

測量此線圈產生的肥皂膜在不同距離下的臨界電量。(方法與前面實驗相同)
 (三)實驗結果:

測量兩種不同半徑線圈的臨界電量:(如圖(十九))
 其中較小的線圈即為其他實驗中所用的線圈。

以游標測量線圈之內外直徑,因線圈非標準正圓,故取二垂直方向測量再取平均。

伯国	坐狐涧县	笠	笛 h(om)	亚均(am)	內外徑平均
邻固-	十徑侧里	^{第一} 入(UII)	矛一头(CⅢ)	十均(011)	(cm)
小	外徑	2.135	2.14	2.1375	2 0575
	內徑	1.99	1.965	1.9775	2.0010
大	外徑	2.48	2.58	2.53	2 452
	內徑	2.463	2.285	2.374	2.432
表(-	-)				

3. 在正電的臨界電量下,兩個線圈分別以 $\frac{\sin^{3}\frac{\varphi}{2}}{\cos^{2}_{2}}$ 對 l^{6} 做圖:

圖(-+)橫軸為距離的六次方 (l_0^6) ,縱軸為 $\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}$ 線圈半徑越大,斜率越小。

(1)半徑大的線圈,回歸直線的斜率較小,與理論相同。代表相同距離下,線 圈半徑越大臨界電量越小。

(2) 結果比較

	斜率(m)	平均半徑(r)	$m x r^2$
小半徑	4. 76×10^{-3}	2.06cm	0.0202
大半徑	3.06 $x10^{-3}$	2.45cm	0.0184

表(二) 斜率(m) X 半徑(r)的平方約為定值,斜率約與 r^2 成反比,支持理

論推導出的
$$\frac{\varphi}{\cos\frac{\varphi}{2}} = K \frac{\varphi}{r^2}$$

六、將線圈接地:

(一)在 實驗與結果討論 四.臨界電量與距離關係 中,正電負電在相同條件下回歸直 線擁有不同的斜率,推測是肥皂膜被不同程度的感應了與帶電物相同的電荷。帶 電物帶負電時,其上的電子比較容易脫離而噴發出去,如圖(二十一)所示,噴發 出去的電子部分被肥皂膜所接收,於是肥皂膜帶一淨負電荷。

圖(二十一)肥皂膜因接 收到金屬球噴發出的電 子,帶了額外的電荷。

(二)達平衡時,如圖(二十二),電荷由帶電物轉移至肥皂膜上的速率(V1)與電荷經由線圈或其他方式流失的速率(V2)相同,此時肥皂膜帶一額外的負電(q),所以帶電物須帶更大量的電量方能達到使肥皂膜破裂的臨界電量。

$$\frac{\mathrm{dq}}{\mathrm{dt}} = \mathrm{v}_1 - \mathrm{v}_2$$

假設 v_2 與膜帶電量成正比, 即 $v_2 = kq$ (k 為常數)

達平衡時 $\frac{dq}{dt} = 0$, $\therefore v_1 = v_2 \Longrightarrow q = \frac{v_1}{k}$

圖(二十二)接地前的線圈,肥皂 膜接收到電荷的速率與流失電 荷的速率達平衡。

(三)若將線圈接地如圖(二十三),肥皂膜下端被排斥的同性電荷因接地而被中和掉, 只剩下上層異性電荷,所以此時因為電子噴出而產生的差異被消除了。若前面推 論是正確的,接地後同條件下臨界電量應較未接地時為小,亦即以 sin³ / 2 cos /

負電應具有相同的效應,有相同的臨界電量,正負電的斜率的差異應會消失。

圖(二十三)線圈接 地後,肥皂膜下端的 電荷被中和掉。

- (四)實驗方法:
 - 1. 將線圈絕緣,在不同距離下測量臨界電量時驗電器夾角(同前面實驗)
 - 將線圈以鱷魚夾連接至一大金屬導體(接觸點先以砂紙磨過,確保其導電良好), 使線圈接地。
 - 3. 在接地的情況下重複步驟 1. 的測量。
- (五)實驗結果:
 - 1. 正電接地前後比較:

圖(二十四) 橫軸為距離的六次方 (l_0^6) ,縱軸為 $\frac{\sin^{\frac{3\varphi}{2}}}{\cos^{\frac{\varphi}{2}}}$,金屬球帶正電。

(1) 接地後回歸直線斜率降低,表示相同距離下臨界電量降低。

2. 負電接地前後比較:

圖(二十五) 橫軸為距離的六次方 (l_0^6) ,縱軸為 $\frac{\sin^{\frac{3\varphi}{2}}}{\cos^{\frac{\varphi}{2}}}$ 。金屬球帶負電。

- (1) 接地後回歸直線斜率降低,與正電時的效應相似。
- (2) 正負電接地後斜率皆降低,支持接地後肥皂膜下方同性感應電荷被消除的 理論。
- 3. 接地後正負電效應比較:

圖(二十六)線圈接地,金屬球帶正電與負電的比較。橫軸為距離的六次方 (l_0^6) , 縱軸為 $\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}$ 。

- (1) 正電負電之回歸線幾乎重合,斜率相等,顯示正負電接地後對肥皂膜的吸 引效應幾乎一樣。
- (2) 接地後肥皂膜遠離帶電物一側的感應電荷被中和掉,去除掉金屬球噴發出 的電子的影響後,正負電荷對肥皂膜的臨界電量相同,支持前面對正負電 斜率差異的解釋。

陸、 結論

- 一、 不論正負電, 肥皂膜皆會受帶電物吸引。
- 二、由理論可推導出肥皂膜形狀的公式,由 excel 畫出形狀後,發現與實驗中的真實形狀 相近。
- 三、當帶電物電量達到一定量時,肥皂膜的張力將無法抵抗電吸引力,於是肥皂膜會持續 變形直到破裂,稱此電量為臨界電量。
- 四、 不論正負電, 距離越近, 臨界電量越小(驗電器角度越小)。

五、 臨界電量時,
$$\frac{\sin\frac{3\varphi}{2}}{\cos\frac{\varphi}{2}}(\phi 為驗電器夾角)與距離六次方 (l^6) 成正比。$$

- 六、 臨界電量與距離三次方成正比(q ∝ l³)。
- 七、以^{sin³Q}/₂ cos^Q/₂(代表意義為q²)對l⁶做圖時,負電斜率較正電為大,亦即負電臨界電量較大。 原因可能與負電較亦傳至肥皂膜所造成。
- 八、 臨界電量約略與 r²成反比。亦即線圈半徑越大, 臨界電量越小。
- 九、 將線圈接地後,不論正電或負電,臨界電量都減小。
- 十、 線圈接地後,正負電在相同條件下臨界電量幾乎一樣。

柒、 未來展望:

一、未來可嘗試使用不同液體(例如酒精)來製作肥皂膜,理論上不同液體有不同介電常數 值,應會有不同的臨界電量。

19

二、 理論推導方面有些部分過於簡化,未來可將其改進,以期能更加符合實驗結果。

捌、 參考資料:

- 一、 <普通物理(Halliday 著)>, 第 22 章電場。
- 二、 <普通物理(Halliday 著)>, 第 23 章高斯定律。
- 三、 <普通物理(Halliday 著)>, 第 25 章電容。(關於介電常數的部分)
- 四、 <微積分(James Steward 著)>, 第五章積分。
- 五、 < 啟發性物理學力學一牛頓力學、彈性、流體和熱力學>有關表面張力的部分。

玖、 備註

一、實驗數據:

(一)臨界電量與距離關係:

1. 正電

墊紙張	距離(公	與球心		1^6 x	l(度)	2(度)	3(度)	4(度)	5(度)	6(度)	平均(度)	$\sin^3 \frac{\varphi}{2}$
數	分)	距離(m)	1^6(m^6)	10^9								$\cos \frac{\varphi}{2}$
18	1.2	0.046	8.9E-09	8.87	26.19	27.82	27.96	29.58			27.8875	0.014417
16	1.32	0.047	1.0E-08	10.40	28.21	30.28	30.58	29.1			29.5425	0.01714
14	1.44	0.048	1.2E-08	12.15	29.39	32.49	31.05				30.97667	0.019761
12	1.56	0.049	1.4E-08	14.13	31.08	33.34	32.16	32.92			32.375	0.022561
10	1.69	0.050	1.6E-08	16.37	35.89	34.1	34.29	34.9			34.795	0.028012
8	1.81	0.052	1.9E-08	18.90	36.74	36.4	36.11	36.57			36.455	0.03222
6	1.93	0.053	2.2E-08	21.75	39	40.54	39.48	38.47			39.3725	0.040601
4	2.056	0.054	2.5E-08	24.95	39.11	40.76	40.23	40.14			40.06	0.042769
2	2.18	0.055	2.9E-08	28.53	41.8	42.6	42.61	43.57	41.75	42.69	42.645	0.051609
0	2.3	0.057	3.3E-08	32.53	44.29	45.87	43.99	45.44			44.8975	0.060246
	2.	負電										
紙張數	距離(公	與球心	1^6	1^6 x	1	2	3	4	5	6	平均角	$\sin^3 \frac{\varphi}{2}$
紙張數	距離(公 分)	與球心 距離(m)	1^6	1^6 x 10^9	1	2	3	4	5	6	平均角 度	$\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}$
紙張數 16	距離(公 分) 1.2	與球心 距離(m) 0.046	1^6 8.9E-09	1^6 x 10^9 8.87	1 31.52	2	3	4	5	6	平均角 度 31.52	$\frac{\frac{\sin^3\frac{\varphi}{2}}{\cos\frac{\varphi}{2}}}{0.0208}$
紙張數 16 15	距離(公 分) 1.2 1.26	與球心 距離(m) 0.046 0.046	1^6 8.9E-09 9.6E-09	1^6 x 10^9 8.87 9.60	1 31.52 32.32	2	3	4	5	6	平均角 度 31.52 32.32	$\frac{\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}}{0.0208}$ 0.0224
紙張數 16 15 14	距離(公 分) 1.2 1.26 1.32	與球心 距離(m) 0.046 0.047	1^6 8.9E-09 9.6E-09 1.0E-08	1^6 x 10^9 8.87 9.60 10.37	1 31.52 32.32 36.56	2	3 33.92	4	5	6	平均角 度 31.52 32.32 34.83	$ \frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}} $ 0.0208 0.0224 0.0280
紙張數 16 15 14 13	距離(公 分) 1.2 1.26 1.32 1.38	與球心 距離(m) 0.046 0.047 0.047	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08	1^6 x 10^9 8.87 9.60 10.37 11.20	1 31.52 32.32 36.56 36.54	2	3 33.92	4	5	6	平均角 度 31.52 32.32 34.83 36.54	$ \frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}} \\ 0.0208 \\ 0.0224 \\ 0.0280 \\ 0.0324 $
紙張數 16 15 14 13 12	距離(公 分) 1.2 1.26 1.32 1.38 1.44	與球心 距離(m) 0.046 0.047 0.047 0.047	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08	1 31.52 32.32 36.56 36.54 36.78	2	3 33.92	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331
紙張數 16 15 14 13 12 11	距離(公 分) 1.2 1.26 1.32 1.38 1.44 1.5	與球心 距離(m) 0.046 0.047 0.047 0.047 0.048 0.049	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08 1.3E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08 13.02	1 31.52 32.32 36.56 36.54 36.78 36.5	2	3 33.92	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78 36.5	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331 0.0323
紙張數 16 15 14 13 12 11 10	距離(公 分) 1.2 1.26 1.32 1.38 1.44 1.5 1.56	與球心 距離(m) 0.046 0.047 0.047 0.047 0.048 0.049 0.049	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08 1.3E-08 1.4E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08 13.02 14.01	1 31.52 32.32 36.56 36.54 36.78 36.5 37.11	2 34 34 36.99	3 33.92 36.42	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78 36.5 36.84	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331 0.0323 0.0333
紙張數 16 15 14 13 12 11 10 9	距離(公 分) 1.2 1.26 1.32 1.38 1.44 1.5 1.56 1.62	與球心 距離(m) 0.046 0.047 0.047 0.047 0.048 0.049 0.049	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08 1.3E-08 1.4E-08 1.5E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08 13.02 14.01 15.07	1 31.52 32.32 36.56 36.54 36.78 36.78 36.5 37.11 37.6	2 34 34 36.99 38.27	3 33.92 36.42 37.86	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78 36.78 36.84 37.97	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331 0.0323 0.0333 0.0364
紙張數 16 15 14 13 12 11 10 9 8	距離(公 分) 1.2 1.26 1.32 1.38 1.44 1.5 1.56 1.62 1.68	與球心 距離(m) 0.046 0.047 0.047 0.047 0.048 0.049 0.049 0.050	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08 1.3E-08 1.4E-08 1.5E-08 1.6E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08 13.02 14.01 15.07 16.20	1 31.52 32.32 36.56 36.54 36.54 36.78 36.5 37.11 37.6 39.44	2 34 36.99 38.27 39.9	3 33.92 36.42 37.86 39.63	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78 36.5 36.84 37.97 39.656	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331 0.0323 0.0333 0.0364 0.0415
紙張數 16 15 14 13 12 11 10 9 8 8 7	距離(公 分) 1.2 1.26 1.32 1.38 1.44 1.5 1.56 1.62 1.68 1.74	與球心 距離(m) 0.046 0.047 0.047 0.047 0.048 0.049 0.049 0.050 0.050	1^6 8.9E-09 9.6E-09 1.0E-08 1.1E-08 1.2E-08 1.3E-08 1.4E-08 1.5E-08 1.6E-08 1.7E-08	1^6 x 10^9 8.87 9.60 10.37 11.20 12.08 13.02 14.01 15.07 16.20 17.39	1 31.52 32.32 36.56 36.54 36.78 36.5 37.11 37.6 39.44 40.18	2 34 36.99 38.27 39.9 39.65	3 33.92 36.42 37.86 39.63 39.89	4	5	6	平均角 度 31.52 32.32 34.83 36.54 36.78 36.78 36.84 37.97 39.656 39.91	$\frac{\sin^3 \frac{\varphi}{2}}{\cos \frac{\varphi}{2}}$ 0.0208 0.0224 0.0280 0.0324 0.0331 0.0323 0.0333 0.0364 0.0415 0.0423

(二)線圈半徑對臨界電量的影響的實驗:

1. 大半徑:

紙張數	距離	與球心	1^6	1^6 x	1	2	3	4	5	平均角	$\sin^3 \frac{\varphi}{2}$
	(公分)	距離		10^9						度	$\cos\frac{\varphi}{2}$
16	0.51	0.039	3.3E-09	3.31	18.88					18.88	0.0045
14	0.64	0.040	4.0E-09	4.03	19.61	23.72				21.67	0.0068
12	0.77	0.041	4.9E-09	4.89	25.29	23.89	23.32			24.17	0.0094

10	0.9	0.043	5.9E-09	5.89	24.02	27.02	26.59			25.88	0.0115
8	1.03	0.044	7.1E-09	7.06	31.77	31.99	30.98	30.89	32.46	31.62	0.0210
6	1.16	0.045	8.4E-09	8.42	33.91	34.8	32.14			33.62	0.0253
4	1.29	0.046	1.0E-08	9.98	34.47	36.47	36.42	34.94		35.58	0.0299
2	1.42	0.048	1.2E-08	11.78	37.02	37.98				37.50	0.0351
0	1.55	0.049	1.4E-08	13.84	39.91	39.71	39.84			39.82	0.0420

(三)接地實驗:

1. 正電接地:

	距離	與球	1^6	1^6	1	2	3	4	5	6	平均	$\sin^3 \frac{\varphi}{2}$
	(公分)	心距		Х							角度	$\cos \frac{\varphi}{2}$
		離		10^9								
18	1	0.044	6.8E-09	6.78	30.62	29.53	29.38				29.8	0.0177
16	1.1	0.045	7.8E-09	7.77	31.89	31.3	31.16	31.95			31.58	0.0210
14	1.2	0.046	8.9E-09	8.87	32.93	34.26	32.68				33.29	0.0245
12	1.3	0.047	1.0E-08	10.11	33.52	34.97	35.42				34.64	0.0276
10	1.4	0.048	1.1E-08	11.49	36.25	36.61	36.59	35.88	36.35		36.34	0.0319

2. 負電接地:

	距離	與球心	1^6	1^6 x	1	2	3	4	5	平均	$\sin^3 \frac{\varphi}{2}$
	(公分)	距離(m)		10^9						角度	$\cos \frac{\varphi}{2}$
18	0.65	0.040	4.1E-09	4.10	24.19	24.68				24.435	0.0097
16	0.79	0.041	5.0E-09	5.03	24.5	27.26				25.880	0.0115
14	0.93	0.043	6.1E-09	6.13	27.72	27.42				27.570	0.0139
12	1.07	0.044	7.4E-09	7.42	30.18	29.05	30.37			29.867	0.0177
10	1.21	0.046	8.9E-09	8.94	33.58	32.41				32.995	0.0239
8	1.34	0.047	1.1E-08	10.70	36.86	34.3	35.77			35.643	0.0301
6	1.48	0.048	1.3E-08	12.75	38.32	39.83	35.49	38.72	38.22	38.116	0.0368
4	1.62	0.050	1.5E-08	15.11	37.41	41.35	40.96	40.9		40.155	0.0431
2	1.76	0.051	1.8E-08	17.83	42.18	41.83	43.52			42.510	0.0511
0	1.90	0.053	2.1E-08	20.94	44.35					44.350	0.0581

3. 正電未接地

	距離	與球心	1^6	1^6 x	1	2	3	4	5	6	平均角	
	(公分)	距離		10^9							度	
8	0.6	0.040	3.8E-09	3.80	31.06	28.99					30.03	0.018
6	0.775	0.041	4.9E-09	4.93	31.12	35.45					33.29	0.025
4	0.95	0.043	6.3E-09	6.32	33.79	37.06	36.38				35.74	0.030
2	1.125	0.045	8.0E-09	8.03	36.18	37.68	42.55	40.31			39.18	0.040

0	1.3	0.047	1.0E-08	10.11	41.64	41.31	41.2	42.25			41.60	0.048
---	-----	-------	---------	-------	-------	-------	------	-------	--	--	-------	-------

4	臽	雷	¥	揺	锄	•
т.	叧	电	ハ	汀女	فتناح	•

	距離	與球心	I^6	l^6 x	1	2	3	4	5	平均角	
	(公分)	距離		10^9						度	
10	0.4	0.038	2.8E-09	2.78			24.36	25.86		25.110	0.011
8	0.54	0.039	3.5E-09	3.46	32.8	33.7	32.48			32.993	0.024
6	0.68	0.040	4.3E-09	4.28	36.91	36.14				36.525	0.032
4	0.82	0.042	5.3E-09	5.26	35.03	35.55	42.02	44.01	41.43	39.608	0.041
2	0.96	0.043	6.4E-09	6.41	40.32		43.94			42.130	0.050