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Hybrid CNN Accelerator System Design and

DESIGN GROUP

the Associated Model Training/Analyzing Tools
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Abstract

In recent years, deep learning technology has been applied to
many noticeable Al applications. Deep learning technology does
well in object features, object detection, semantic segmentation
and other emerging applications. It is also applied to factory
production line inspection assistance, ADAS/Self-driving car
applications, intelligent 3C products, etc. In order to efficiently
inference CNN model on the edge device platform, DSP, GPU or
NPU are usually used to accelerate these operations. CNN model
inferencing is different to the model training. It usually adopts the
fixed-point data type in CNN model inferencing to achieve both

the low computation cost and high performance.

This work proposes a Hybrid CNN hardware accelerator system
design and the related model training/analyzing tools that can
support a hybrid fixed-point convolutional neural network. The
Hybrid CNN Inferencing system is shown in Fig. 1, which can
be divided into software and hardware parts. On the hardware
side, this work proposes a CNN hardware accelerator and the
corresponding Hybrid CNN Model Parser/Compiler that can
dynamically support the Hybrid fixed-point layer operations.
The proposed hardware accelerator uses 638KB of on-chip
SRAM, having dataflow with high data reuse rate and the ping-
pong buffer pre-storage mechanism to make the Hybrid fixed-
point CNN hardware accelerator providing high computing
performance and high hardware utilization rate. This work
equips 6x16 PE array and a flexible PE Array configuration
method, such that the common operations of CNN layer can
be efficiently mapped to the hardware accelerator of this work.
This design operates at 200MHz when implemented in TSMC
40nm Technology. It offers 921.6 GOPS peak performance when
operating 8-bit feature map/8-bit weight convolution and 7.37
TOPS peak performance when operating 1-bit feature map/1-
bit weight convolution. Under the TSMC 40nm technology, the
area of the proposed design is 4,514 x 4,515 um? and the power
consumptionis 559.89mW.

In the software side, we train the Hybrid fixed-point CNN model

through the Knowledge transfer and dynamic quantization

according to our proposed tool, ezHybrid-M. It reduces 91% model
size for MobileNet-SSD test case and 52% model size reduction
for VGG16 test case. The highly model compression rate makes
the model inferencing more low power and low cost. For the
hardware and software integration and verifications, our CNN
accelerator and the model parser/compiler support the native
BVLC caffe framework and our CNN model training/analyzing
tool, which is developed base on the caffe. By using our training
tool, the calculation results of software framework and hardware
accelerator will be exactly the same in bit accurate level. The
accuracy will not be degraded when the CNN model is porting
from the floating-point32 data type training framework to the
fixed-point data type hardware accelerators. For the integration
of hardware and software, the proposed design has been verified
on the Xilinx ZCU102 FPGA platform. It can achieve the real-time
computing performance 30fps of Tiny Yolov2 model when it is
operated at 150MHz.
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