A Computing-In-Memory SRAM Using
Charge-Domain Computing Mechanism
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Abstract

With the advancement of artificial intelligence (AI) and machine-
learning (ML) technologies, neural network-based ML architectures
have demonstrated outstanding classification performances
for many applications such as image and speech recognition.
Accompanied by the rising of IoT products, the ML structures are
massively applied on local edge devices for better performance.
Compared to traditional cloud Al computing, edge Al computing
can realize lower latency with better efficiency. Moreover, it
achieves higher reliability and privacy by circumventing the
need for the Internet connection. However, edge devices have
substantially limited energy and computation resources. This
makes the implementation of complex ML structures on a

resource-constrained edge device really challenging.

For the emerging edge Al applications, computing-in-memory
(CIM) architecture is proposed to further enhance the computation
efficiency when performing ML tasks. The CIM architecture
obviates the expensive data movement by performing
computation directly inside the memory. This architecture achieves
substantially higher energy efficiency than the conventional Von
Neumann computation architecture, whose energy consumption

is dominated by data movement.

However, since the implementation of a CIM SRAM requires
additional data conversion interfaces, including digital-to-analog
converters (DACs) and analog-to-digital converters (ADCs),
the performances of these analog circuits ultimately limit the
throughput, energy, and area efficiency of a CIM SRAM. This
problem seriously constrains the application space of CIM SRAM to

Al applications with low or moderate performance requirements.

In this work, we present a high-throughput, energy-area-efficient
CIM SRAM for resource-constrained edge Al applications. This
work overcomes the traditional performance bottleneck of CIM
SRAM resulting from the data processing and conversion circuits
by employing (1) the proposed dynamic current-steering DAC that
achieves high conversion speed, energy efficiency, and linearity
performance, and (2) the proposed unified charge processing
network that simultaneously provides analog signal processing
and data conversion functions with high energy and area
efficiency. A test chip was fabricated in 28-nm CMOS technology
to verify the proposed CIM SRAM design, which achieves a high
throughput of 186.18 GOPS, with energy and area efficiency of
41.87 TOPS/W and 3288.4 GOPS/mm’. This represents 2.26x,
1.12%, and 2.89x performance improvements in throughput,
energy, and area efficiency, respectively, compared to the state-of-

the-art high-performance CIM SRAM designs.
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A Fig. 2 System architecture of the proposed CIM SRAM
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