第十二屆旺宏科學獎

成果報告書

參賽編號:SA12-143

作品名稱:行人守護神之 LED 安全斑馬線

姓名:林宗慶

關鍵字:斑馬線、安全、LED

研究題目

行人守護神之 LED 安全斑馬線 針對行人的交通安全思考,如何降低行走馬路上意外事件發生的機率。

壹、研究動機

根據日前新聞報導,新北市板橋發生行人遭輾斃案件,一名 60 多歲婦人穿越馬路時,遭轉彎的公車撞上,送醫不治。由此案例可知,行人過馬路的安全問題實為一大隱憂。我們在團隊以腦力激盪術構思後,針對傳統斑馬線作一大膽假設,當行人走在斑馬線上,若能有警示的 LED 光亮跟隨著行人,想必能使通過馬路的行人安心許多,也能使駕駛隨時注意到行人的位置,減少許多意外的發生。

貳、研究目的

入夜後馬路上視線不若白天,加上對向車道車燈照射,當行人過馬路時, 駕駛人若一分心,等發現路人時,很可能造成意外發生。因此我們運用了高亮度 低耗能的 LED 燈加入傳統斑馬線,讓夜間的斑馬線更加安全。此外,以光電開關 作為感測裝置,避免無人車經過時,造成能源的浪費。

此項作品,LED 燈的亮度不僅能明顯提醒夜間行車的駕駛人,注意過馬路的行人,讓路人確保安全,也利用太陽能綠色能源供給電力,達到了安全節能的雙重功效。

本作品設定達成下列目標

- (一)設計行人感測裝置,作為 LED 燈亮起判斷依據
- (二)設計隨行人移動的 LED 裝置
- (三)設計太陽能電力裝置,作為電力來源

參、研究過程

一 研究材料:如表一所示為本研究所使用的材料

表一 研究材料

名稱	規格及用途
1. LED 燈管	照 明 設 備
2. PLC	程式設計
3. 光電開關	感應人是否有通過
4. 木板	作品外觀結構
5. 壓克力板	作品外觀結構
6. 太陽能模板	發 電 功 能,作 為 電 力 來 源

二 設備儀器: 如表二所示

表二 設備儀器

名稱	規格及用途
1. 電源供應器	提供測試電源
2. 剝線鉗	剝除電線絕緣皮
3. 烙鐵	電路板之焊接
4. 吸錫器	吸除多於碎屑
5. 螺絲螺母	元件之連接
6. 電線	元件之連接
7. 鋸子	壓克力板與木板裁切
8. 接著計	外觀結構連接
9. 三用電表	電路結構測試
10. 照度計	光 度 測 量

圖1測量長度

圖2切割木板

圖3組合木板

圖 4 測試木板是否堅固

圖 5 切割角鋼

圖 6 LED 燈座

圖7 LED 燈座結合角鋼

圖 8 LED 燈座配線

圖 9 LED 燈座結合 PLC

圖 10 程式輸入

圖 11 測試程式對錯

圖 12 作品完成圖

圖 13~16 實際動作圖

肆、結論

- 1. 此作品可用於鄉下地區也可用於都市區。在鄉下地區的光線通常都不太足夠,如果把此作品應用上,過馬路時,能夠更安全通過。都市區常有忽略行人的左右 彎來車或搶黃燈的快車,如果行人踩在斑馬線上,使 LED 發亮,就能使駕駛人提 早知道前方有行人,避免意外的發生
- 2. 過去在斑馬線上的行人,往往在晚上照到車燈時才會注意到,會讓駕駛人反應 不及,但運用了此種光電開關與斑馬線結合,將可使駕駛人明確的注意到行人的 位置,並確保其行人安全。
- 3. 有人採用手動控制,使斑馬線發亮,並且讓駕駛知道前方的斑馬線有人要通過,一次就亮整條路線,而我們利用光電開關,當行人走在斑馬線,LED 燈會依照行人所踩到的位置發亮,而此裝置電力皆來自白天的太陽光,不僅可以使人們的生命受到保護,還有節能效果,生產過程不會產生污染,是現代科技的新興能源。
- 3. 根據台北市交通大隊統計,去年車輛違規搶越行人穿越線,車禍高達九百七十四件,受傷人數一千二百四十三人、死亡十三人,平均一個月發生八十一件違規,要是未來斑馬線都有這個功能,一定能減少車禍的發生。

伍、討論及應用

(一)討論

在製作這項作品時,一直不知道要選用哪種感測方式,後來第一代模型決定 先用 LS 開關代替感測器,但是 LS 開關的放置點與固定方式,使我們苦惱很 久,終於找到放的位置跟固定方式,也考慮到光的強弱,因為駕駛若遇到光 害反而造成他人的危險,所以壓克力板採用霧面的。並且加裝太陽能板,來 達到節能效益。

Q1:斑馬線的間隔似乎過大,若沒踩到怎麼辦?

A:設計延遲2秒亮的電路,或是縮小白線間的間距。

Q2:實際施工時如何安裝問題?

A:採單個模組挖洞安裝,類似挖排水溝的作法。從各縣市新興的重劃區先鋪設,再逐步更新舊有市區街道的傳統斑馬線。

Q3:現場如何解說?

A:模型上要有公仔模擬行走,先走一般的斑馬線(不發亮)然後被模型車撞, 在演示行走閃光斑馬線,使駕駛人注意到發光路面及路人而減速,行人得以 安全通過。

Q4:LED 的光線是否會造成駕駛光害?

A:LED 透視出來的光並不強,在夜晚的亮度是很明顯的,足夠讓駕駛注意的 亮度。

05:為什麼不直接在斑馬線上裝反光的東西?

A: 我們的 LED 燈能跟隨行人,可以達到更安全的效果。

Q6:太陽能板有辦法提供電力嗎?

A:可以採用與太陽能紅綠燈做結合。

第二代班馬線根據以上缺點作改良,感測方式也改用光電開關來解決第一個 問題。

陸、參考資料

- 1. 張榮洲, 數位電路 DIY, 第二版, 全華圖書, 2010 年 08 月 24 日
- 2. 張榮洲,電子線路 DIY,第二版,全華圖書,2010年 07月 08日。
- 3. 陳元燈、陳宇, LED 制造技術與應用,電子工業出版社,2009年10月01日。
- 4. 日本太陽能學會出版,圖解太陽能應用技術,世茂出版社,2009年08月27日

柒、心得

第一代的作品,我是用紙板作出一個模型,製作邏輯電路時,還發生了問題,經過多次修改,問題中有發現到 IC555 的缺點,則改用 IC74123,也發現到同一個負載,接多個開關會逆流,因此加裝二極體,就能夠正常運作。

第二代是做成真實版的 1/2,採用 PLC 來控制,在程式設計也發生一些問題,並請教老師才解決。製作的過程中發現到切割木板其實不容易,常常都會有誤差,導致整體變難看,切割角鋼一開始怕怕的,做完一個後,發現並沒有那麼困難。