第十六届旺宏科學獎

成果報告書

參賽編號:SA16-367

作品名稱:從都卜勒效應探討美濃地震的破裂方向性

姓名:黄申昌

關鍵字:美濃地震、都卜勒效應、破裂方向性

研究題目:從都卜勒效應探討美濃地震的破裂方向性

壹、研究動機

2016年小年夜的美濃地震(圖一)造成了許多損失,尤其是維冠大樓倒塌的意外造成一百多人死亡更是令人惋惜。然而這次震央地點是在高雄美濃,災情最慘重的地方卻是在台南,也引起了我的興趣。

經過了初步的查詢,我發現造成台南災情慘重的原因有很多,撇開工程因素不談,就有 如場址效應、震源附近地質、破裂方向性等自然因素^[20]。因為破裂方向性比較少人研究, 因此我打算就破裂方向性的角度來探討。

貳、研究目的

一、探討距離及頻譜差異的關係。

二、探討美濃地震在不同方向造成的頻譜差異。

三、藉由美濃地震在不同方向造成的頻譜差異,探討美濃地震的破裂方向性。

參、研究背景

在地震發生的過程中,如果破裂的部分沿著其中一邊特別顯著,那這個地震會被視為具 方向性。

都卜勒效應是當波源移動時,在波源移動方向測到波的頻率的改變。當震源沿著斷層面其中一邊破裂,在其破裂方向上的測站就會收到比較高頻的波形訊號,而在破裂方向對面的測站就會收到比較低頻的波形訊號。

G. Calderoni 及其團隊^[木] 曾在義大利研究一系列地震的破裂方向性,他們藉由比對不同 方位角測站接收到的頻譜差異,來推測個別地震破裂方向性的明顯程度。該研究開發了一個 「破裂方向性指標」,針對一系列的地震進行研究,從中挑出規模小、破裂方向性不明顯的 地震作為參考地震,並以該地震為標準,濾除場址效應、儀器效應等的影響以探討各地震的 破裂方向性。本研究擷取了其頻譜比的概念,並試著將其推廣成可以推出地震大約的破裂方 向。推廣的方式如下:

如果有一個地震,其四周有許多測站,如果地震沒有破裂方向性,且不考慮震源因素以

外的效應,則四周的測站會接收到相同的頻譜。如果地震有破裂方向性,假設是西向東,則 在西邊的測站接收到的頻譜就會往低頻偏移、在東邊的測站會接收到的頻譜往高頻偏移、而 南、北邊的測站會收到相似的頻譜。因此,只要比對兩個對震央方位角相差 180 度的測站的 頻譜,如果頻譜的差距越大,地震的破裂方向性就越有可能是那個方向。

然而頻譜可能包含了路徑效應、場址效應等的影響,因此需要參考地震來去除這些效 應,原理如下:

地震測站接收到的地震波形,在時域上可視為:

U(t) = S(t) * E(t) * A(t) * I(t)

其中,U(t)為測站接收到的訊號,S(t)為震源效應,E(t)為路徑效應,A(t)為場址效應,I(t)為儀器效應。

對波形做傅立葉分析,得到其在頻域上的表現為:

 $U(w) = S(w) \times E(w) \times A(w) \times I(w)$

原先在時域上的摺積,到了頻域上就成了乘積。

當我們有兩組來自相同測站,紀錄震源位置相近地震的資料,將其相除後,由於使用的 是相同的儀器、而且是在相同的地點,因此儀器及場址效應都可去除,又由於兩地震震源位 置相近,所以路徑效應亦可去除,因此便可藉由此動作,得出震源效應的差異。

一般而言,美濃地震及參考地震的震央應愈接近愈好,方能有效消除路徑效應造成的影響;又參考地震的規模應愈小愈好,才能將其近似為點事件而不會造成太大誤差,但其規模 又不能小到使儀器測不出其波形。

本研究使用的地震有:

美濃地震(圖一、圖二): 2016-02-06 03:57:26 M6.6

2

由各種不同震源機制解(圖二)顯示,美濃地震的破裂面方向約為西偏北15度。

參考地震(圖三、圖四): 2013-02-19 14:52:39 M4.7

名詞解釋:

參考地震:為消除頻譜中場址效應等的影響,找一個震央位置與美濃地震震央相近,規 模比美濃地震小,並不具破裂方向性的地震做為參考地震。

測站距離(d)、方位角(θ):如圖五,測站距離指的是測站距離地震震央的直線距 離;而方位角指的是測站相對於地震震央的方向,以正北為0、正東為90、正南為180、正 西為270。

頻譜:波形強度隨頻率的變化。

頻譜比:將同一測站收到的美濃地震頻譜與參考地震頻譜相除所得到的比值。和頻譜相 比,頻譜比更能反映出一個地震的震源效應,因為場址效應等其他效應會在相除的過程中被 去除。在本研究中,只要是展現頻譜比的圖,其橫軸均為取對數後的頻率,縱軸均為該頻率 上美濃地震相對於參考地震的強度,一樣經過取對數處理。

肆、研究設備與器材

本研究使用中研院的 Palert 地震波形資料庫^[五]為波形資料來源。此資料庫收錄從 2011 年起的地震資料,使用的地震儀是微晶電地震儀,因此對微小震動及頻率在 8Hz 以上或 1Hz 以下的地震波不敏感。本研究使用 Octave 做數據分析。Octave 是一個與 Matlab 相近的免費 數值分析軟體,並具備分析特殊地震波形檔案的功能。

伍、研究過程

一、研究方法

(一)參考地震的選定

1. 在資料庫中尋找震央距離美濃地震震央小於 10 公里的地震。

 在 1. 挑出的地震中,選出規模介於 4.0~5.0 之間的地震。如果地震規模小於 4.0, 測站將會接收不到參考地震的波形;如果地震規模大於 5.0,該地震可能有自己的破裂方向 性。

在 2. 挑出的地震中,選出震源機制解與美濃地震接近的地震。
 經過了這三個步驟,本研究挑出了一個地震作為參考地震: 2013-02-19 14:52:39 M4.7。

(二)得出測站的頻譜比

5

- 1. 從線上資料庫下載該測站測到美濃地震及參考地震的原始波形資料。
- 2. 分別將美濃地震及參考地震的原始波形資料進行前處理,去除雜訊干擾。
- 3. 對前處理完的美濃地震及參考地震波形進行傅立葉分析,得出該兩地震的頻譜。
- 4. 將美濃地震的頻譜除以參考地震的頻譜,得出兩地震在該測站上的原始頻譜比。
- 5. 將測站上的原始頻譜比平滑化,得出測站頻譜比。

- (三)比較頻譜比之間的差距
 - 將欲比較的兩個頻譜比畫在同一張圖內,其中橫軸是頻率的對數值、縱軸是美濃地 震與參考地震的相對強度的對數值,如圖七,不同的頻譜比以不同的顏色標示以利 辨識。
 - 選出 1~8 Hz(相當於圖中橫軸的 0~0.9)做為比較的範圍,此範圍為 P-alert 使用的 地震儀對地震波波形敏感的範圍。

- 計算出比較範圍內紅色線高過黑色線的面積(圖中紅色區塊)及黑色線高過紅色線
 的面積(圖中黑色區塊)。
- 4. 將紅色區塊的面積減去黑色區塊的面積,即得到頻譜比差距的指標。

這個指標反映了兩頻譜比之間的差異,指標愈大則頻譜比間差異愈大,若兩測站方位 角相差接近180度則可表示破裂方向性愈明顯。

(四)探討距離及頻譜差異的關係

- 1. 挑選數對方位角相近(<5度),但離震央距離相差很遠的測站。
- 2. 對每一對方位角相近的測站,計算其頻譜比差距的指標。

若頻譜比差距的指標很小,則表示距離對頻譜比的差異影響不顯著,之後選取測站時就可以忽略其距離,而專注在其方位角上。

(五)探討美濃地震在不同方向造成的頻譜差異

- 挑選四群測站,其測站的方位角分別在美濃地震斷層走向的兩側及垂直美濃地震 斷層走向的兩側。
- 2. 計算出各個測站的頻譜比。
- 3. 將每一群測站的頻譜比做平均。
- 4. 比較四群測站的平均頻譜比。

若美濃地震沒有破裂方向性或其效應不顯著,則四群測站的平均頻譜比會十分接近;

反之若美濃地震有破裂方向性,則美濃地震斷層走向兩側的平均頻譜比會有顯著的差

距,而頻譜比較高的那一側即為美濃地震的破裂方向。

(六)探討美濃地震的破裂方向

1. 挑選數對方位角相差 180(±5度)度的測站。

2. 計算每一對測站頻譜比差距的指標。

若該對測站的頻譜比差距越大,就表示美濃地震的破裂方向更有可能是該方向。

二、研究成果

(一)探討距離及頻譜差異的關係

1. 選定測站:如表一所示,本部分選取了三對測站,每對測站的方位角差不超過0.5
 度,並且在美濃地震及參考地震的最大加速度值均大於0.8。每一對測站中,距離震央較近
 的測站(及其收到的資料)以黑色表示,距離震央較近的測站(及其收到的資料)以紅色表示。

表一、距離及頻譜差異的關係使用的測站列表,圖中黃色有星型標記的是美濃地震震央, 綠色有星型標記的是參考地震震央。

測站名稱	θ	d
W17F	7.32	126 km
W190	7.69	61 km
W116	94.51	71 km
W118	94.19	54 km
W143	168.24	105 km
W135	168.02	30 km

2. 比較同一對兩測站間的頻譜比。因為本研究要測量的是較高頻的訊號,本研究考慮的是 1Hz 以上的訊號,又本研究使用的地震儀對 8Hz 以上的波不敏感,因此比較的範圍是

1Hz~8Hz,亦即圖上橫軸的 0~0.9。本研究採用比較範圍內紅線在黑線上方的面積減去黑線在 紅線上方的面積作為頻譜比差距的指標。

三對測站的頻譜比如下圖所示:

表二、利用頻譜比間的面積差分析三對測站的頻譜比							
編號 d 編號 d 面積							
W17F	126 km	W190	61 km	-0.09271			
W116	71 km	W118	54 km	0.15171			
W143	105 km	W104	30 km	0.26399			

測出來的指標是負的,就意味著黑線在紅線上方的面積比紅線在黑線上方的面積大。 在與兩相反方向測站測出的指標相比,在這邊測得的指標算是小的,也就是兩頻譜比相對接 近。

由以上的分析可看見,三對測站的紅線和黑線均十分接近,由此可見測站距離對測站測 得之頻譜比的影響不大,也表示之後的研究方法是確實可行的。

(二)探討美濃地震在不同方向造成的頻譜差異

- 選定測站:如圖十及表三所示,本部分選取了四群測站,分別位於美濃地震的
 東、西、南、北方,每個測站在美濃地震及參考地震的最大加速度值均大於 0.8。在這四群
 測站中,位於震央東、西、南、北側的測站(及其收到的資料)分別以黑色、紅色、藍色、
 桃色表示。

測站群	測站編號	座標	d	θ
1	W115	(22.61°N, 121.00°E)	2.61°N, 121.00°E) 59 km	
	W111	(22.81°N, 121.09°E)	58 km	103.35
	W116	(22.88°N, 121.23°E)	71 km	94.51
	W118	(22.89°N, 121.06°E)	54 km	94.19

2	L005	(23.00°N, 120.22°E)	34 km	282.62
	W224	(22.98°N, 120.24°E)	31 km	280.74
	W225	(22.95°N, 120.23°E)	32 km	273.19
3	W142	(22.33°N, 120.62°E)	67 km	172.83
	W149	(22.37°N, 120.63°E)	63 km	171.80
	W136	(22.46°N, 120.62°E)	52 km	170.68
	W13B	(22.53°N, 120.63°E)	45 km	168.56
	W135	(22.67°N, 120.60°E)	30 km	168.02
4	W075	(23.55°N, 120.93°E)	80 km	29.48
	W082	(23.71°N, 120.87°E)	93 km	21.32
	W199	(23.53°N, 120.74°E)	69 km	17.06
	W208	(23.47°N, 120.70°E)	62 km	15.46
	W204	(23.63°N, 120.94°E)	52 km	14.63
	W190	(23.48°N, 120.66°E)	61 km	7.69
	W193	(23.56°N, 120.56°E)	70 km	1.20
	W201	(23.59°N, 120.55°E)	73 km	0.93

2. 計算出各測站的頻譜比後,將同一群測站的頻譜比做平均,即可得到震央東、

西、南、北側的頻譜比,如下圖所示:

平均值,不同顏色表示不同群的測站。	群測站的平均值,在其上下的線分別是平均
	值加減一標準差。

圖十一、美濃地震在不同方向造成的頻譜差異中四組測站的頻譜比

從圖十一可看出,頻譜比的大小為桃>紅>藍>黑。紅、藍、黑的部分符合都卜勒效應 的預期,亦可推知地震是由東向西破裂,然而桃色的頻譜比大於紅色是需要再加以解釋的地 方。

(三)討論美濃地震的破裂方向

選定測站:如圖十二及表四所示,本部分選取了八對測站,每對測站之方位角均相差 180 度,偏差不超過 3.5 度,並且在美濃地震及參考地震的最大加速度值均大於 0.8 gal。
 每一對測站中,位於東南的測站(及其收到的資料)以黑色表示,位於西北的測站(及其收到的資料)以紅色表示。

表	表四、測站列表									
N⁰	編號	座標	d	θ	編號	座標	d	θ		
1	W192	(23.56°N, 120.49°E)	70 km	355.12	W142	(22.33°N, 120.62°E)	67 km	172.83		
2	W237	(23.28°N, 120.47°E)	40 km	349.17	W136	(22.46°N, 120.62°E)	52 km	170.68		
3	W207	(23.43°N, 120.40°E)	57 km	344.92	W143	(22.01°N, 120.75°E)	105 km	168.24		
4	W217	(23.32°N, 120.41°E)	46 km	342.44	W13E	(22.02°N, 120.84°E)	105 km	162.86		

5	W196	(23.46°N, 120.34°E)	62 km	339.82	W14B	(22.24°N, 120.80°E)	82 km	160.59
6	W229	(23.27°N, 120.25°E)	48 km	321.20	W11E	(22.46°N, 120.94°E)	66 km	141.43
7	L005	(23.00°N, 120.22°E)	34 km	282.62	W111	(22.81°N, 121.09°E)	58 km	103.35
8	W225	(22.95°N, 120.23°E)	32 km	273.19	W118	(22.89°N, 121.06°E)	54 km	94.19

2. 計算出各測站的頻譜比後,比較每一對測站的頻譜比。

八對測站的頻譜比如下圖所示:

表五、八對測站頻譜比間的面積差								
$N^{\underline{o}}$	測站(紅) θ		測站(黑)	θ	面積差			
1	W192	355.12	W142	172.83	0.61427			
2	W237	349.17	W136	170.68	0.54737			
3	W207	344.92	W143	168.24	0.42447			
4	W217	342.44	W13E	162.86	0.47737			
5	W196	339.82	W14B	160.59	0.42990			

6	W229	321.20	W11E	141.43	0.67932
7	L005	282.62	W111	103.35	0.68489
8	W225	273.19	W118	94.19	0.57010

的方位角,縱軸是該測站對測得的頻譜比面積差。

由表五和圖十四可看出在 280°~320°及接近 360°的地方有特別高的指標,而在 270°及 340° 附近有特別低的指標。在兩相對方向的測站中,每對測站測得的指標都比同方向的測站(探 討距離及頻譜差異的關係)來的高,算是相當穩定。只是為何指標會有兩個高峰,是要再討 論的地方。

陸、討論

一、美濃地震的破裂方向為何?

在「討論美濃地震的破裂方向」中,280°~320°(意即西偏北 10°~30°)有特別高的指標, 意味著美濃地震的破裂方向是在那個方向,也和震源機制解推論出的斷層面方向相符。然 而,在接近正北的方向也有測到特別高的指標,而特別高的指標的方向可以對應到「探討美 濃地震在不同方向造成的頻譜差異」中桃色的測站,而這些桃色的測站也顯示了特別高的頻 譜比,暗示了美濃地震除了有往西北的破裂方向之外,尚有向北的破裂方向。本研究結合震 源機制解的結果,可推論美濃地震是先往西北破裂、再轉向向北破裂,與中研院地球科學研 究所的簡報中「從動態圖可以窺知,地震可能先向西再轉為向北破裂。」^[-]推論出的相符。 二、此研究方法能否應用於其他地震?

除了美濃地震之外,此研究方法亦有用於探討 2013 年瑞穗地震的破裂方向性,茲將結 果列於下:

(一) 地震基本資料

(二)探討瑞穗地震在不同方向造成的頻譜差異

圖十七、瑞穗地震在不同方向造成的頻譜差異使用的測站地圖

表六、測	站列表			
測站群	測站編號	座標	d	θ
1	W01D	(23.78°N, 121.56°E)	30 km	29.75
	W002	(23.99°N, 121.63°E)	53 km	23.71
	W00F	(23.98°N, 121.62°E)	51 km	22.89
	W048	(24.58°N, 121.87°E)	123 km	21.69
	W022	(23.87°N, 121.56°E)	38 km	21.61
	W008	(23.94°N, 121.58°E)	46 km	20.69
	W031	(24.33°N, 121.74°E)	92 km	20.61
	W03D	(24.45°N, 121.78°E)	106 km	20.08
2	W019	(23.3°N, 121.27°E)	32 km	209.03
	W12A	(23.13°N, 121.18°E)	53 km	208.28
	W118	(22.89°N, 121.06°E)	81 km	206.72
	W113	(22.97°N, 121.12°E)	71 km	205.8
	W127	(22.86°N, 121.09°E)	83 km	203.8
	W01F	(23.17°N, 121.25°E)	45 km	202.82
	W103	(23.12°N, 121.23°E)	51 km	202.59
3	W097	(23.94°N, 120.67°E)	88 km	299.62
	W078	(23.79°N, 120.94°E)	56 km	299.14
	W08C	(23.91°N, 120.64°E)	89 km	296.44
	W08A	(23.87°N, 120.68°E)	84 km	295.2
	W07B	(23.78°N, 120.86°E)	62 km	294.77
	W08E	(23.81°N, 120.72°E)	77 km	292.09

	W095	(23.84°N, 120.63°E)	87 km	292.02
--	------	---------------------	-------	--------

由圖十八可看出,頻譜比大小為紅>藍>黑,顯示出瑞穗地震是由南往北破裂。

(三)討論瑞穂地震的破裂方向

表	表七、瑞穗地震的破裂方向使用的測站列表									
	編號	座標	d	θ	編號	座標	d	θ		
1	W01D	(23.78°N, 121.56°E)	30 km	29.75	W019	(23.3°N, 121.27°E)	32 km	209.03		
2	W002	(23.99°N, 121.63°E)	53 km	23.71	W127	(22.86°N, 121.09°E)	83 km	203.8		
3	W00F	(23.98°N, 121.62°E)	51 km	22.89	W01F	(23.17°N, 121.25°E)	45 km	202.82		
4	W048	(24.58°N, 121.87°E)	123 km	21.69	W125	(22.9°N, 121.13°E)	78 km	202.19		
5	W014	(24.12°N, 121.62°E)	66 km	18.3	W020	(23.28°N, 121.32°E)	32 km	198.35		
6	W003	(23.84°N, 121.51°E)	34 km	15.43	W116	(22.88°N, 121.23°E)	77 km	194.84		
7	W00D	(23.83°N, 121.47°E)	32 km	9.97	W114	(23°N, 121.29°E)	63 km	192.75		

8	W012	(24.21°N, 121.48°E)	73 km	5.03	W120	(23.08°N, 121.35°E)	53 km	187.48
---	------	---------------------	-------	------	------	---------------------	-------	--------

表八、八對測站的頻譜比間的面積差												
	測站(紅)	θ	測站(黑)	θ	面積差							
1	W01D	29.75	W019	209.03	0.89090							
2	W002	23.71	W127	203.8	0.73090							
3	WOOF	22.89	W01F	202.82	0.60058							
4	W048	21.69	W125	202.19	0.71552							
5	W014	18.3	W020	198.35	0.67486							
6	W003	15.43	W116	194.84	0.63070							
7	W00D	9.97	W114	192.75	0.64091							
8	W012	5.03	W120	187.48	0.51704							

制解的推測相符,然而瑞穗地震震央瀕臨東海岸,其東側幾無測站,故確切的方

向無法得知。

- 三、此研究方法和現有方法的優缺點比較
 - (一)此研究方法與震源機制解的比較

震源機制解是將各個測站測得的 P 波初動方向投影在一圓盤上,藉此獲得兩個可 能的面,惟不知哪個面才是地震真正的破裂面,也不知道地震是否有破裂方向 性。此研究方法使用上雖然比震源機制解繁雜一些,可是能確定地震的破裂面, 並得出地震是否有破裂方向性,因此在決定地震的破裂方向性上,此研究方法是 比震源機制解適合的。

(二)此研究方法與G. Calderoni 方法的比較

G. Calderoni 的方法為針對一特定斷層系統,在其兩端各選取一群測站,再比較那 兩群測站平均頻譜比的強度,即可得知該斷層系統上地震的破裂方向性及強度。 然而,此方法雖然能得知地震是否有破裂方向性,卻無法得知地震確切的破裂方 向,因此只適用於破裂方向已知的斷層系統。本研究方法因為是將各個位於不同 方向的測站分別做比較,因此可以獲得較為準確的破裂方向,然而震央四周需要 都有測站才能確定該地震的破裂方向。

四、此研究方法的原創性及貢獻

使用頻譜比研究地震的行為尚屬非常新的做法,而本研究不僅使用了頻譜比測量地震的 破裂方向性,更推廣此方法使其可用於推斷地震的破裂方向,進而解除了「使用頻譜比的做 法需要在已知破裂型態的斷層」的限制。而且因為臺灣有密集的地震觀測網,使此方法使用 上更加適合。當我們有了更多的資料,我們就可以研究更多地震的破裂型態,希望可以找出 臺灣地震的活動規律。

柒、結論

综合以上的分析與討論,本研究的結論如下:

一、測站距離對測站測得之頻譜比的影響不大,表示此研究方法在理論上是可行的。

二、採用頻譜比的方法衡量地震的破裂方向性的確切方向是行得通的,只是震央周圍需要有 足夠的測站蒐集資料。 三、與震源機制解的結果作結合,本研究認為美濃地震的破裂方向是先向西偏北 10~50 度再向北,與其他方法的推測相符。

捌、參考資料

-、2016-02-06 ML 6.4 高雄市美濃區地震(2016 年 2 月 26 日)・中央研究院地球科學研究所・上網日期:2017 年 2 月 12 日・取自

http://tec.earth.sinica.edu.tw/new_web/upload/news/EQfile/2016-02-06M6.4.pdf

- 二、台灣地區地震科學資訊系統(2014)・中央研究院地球科學研究所・上網日期:2017年2月12日・取自 <u>http://tesis.earth.sinica.edu.tw/Alllist.php</u>
- 三、地震活動彙整・交通部中央氣象局・上網日期:2017年2月12日・取自 http://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm
- 四、楊之瑜(2016年2月6日)・台南為何搖晃時間較長?主因是「場址效應」、餘震
 將持續1~2個月・關鍵評論網・上網日期:2017年2月12日・取自
 https://www.thenewslens.com/article/35998
- 五、P Alert Event Catalog (2013)・中央研究院地球科學研究所・上網日期:2017年2月 12日・取自 <u>http://palert.earth.sinica.edu.tw/db/</u>
- 六、G. Calderoni, A. Rovelli, Y. Ben-Zion & R. Di Giovambattista. (2015). Along-strike rupture directivity of earthquakes of the 2009 L' Aquila, central Italy, seismic sequence. Geophysical Journal International, 203, 399-415.